3.254 \(\int \frac{\sqrt{\sec (c+d x)}}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=97 \[ \frac{3 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{\sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

[Out]

(3*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d
) - (Sec[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.121989, antiderivative size = 97, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {3811, 3808, 206} \[ \frac{3 \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{\sin (c+d x) \sec ^{\frac{3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(3*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d
) - (Sec[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2))

Rule 3811

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(Cot[
e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*(2*m + 1)), x] + Dist[m/(a*(2*m + 1)), Int[(a + b*Csc[e
 + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1
, 0] && LtQ[m, -2^(-1)]

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{\sec (c+d x)}}{(a+a \sec (c+d x))^{3/2}} \, dx &=-\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{3 \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{2 a d}\\ &=\frac{3 \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{2 \sqrt{2} a^{3/2} d}-\frac{\sec ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.16234, size = 120, normalized size = 1.24 \[ \frac{-2 \sin (c+d x) \sqrt{1-\sec (c+d x)} \sec ^{\frac{3}{2}}(c+d x)-3 \sqrt{2} \tan (c+d x) (\sec (c+d x)+1) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{\sec (c+d x)}}{\sqrt{1-\sec (c+d x)}}\right )}{4 d \sqrt{1-\sec (c+d x)} (a (\sec (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(-2*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x] - 3*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqr
t[1 - Sec[c + d*x]]]*(1 + Sec[c + d*x])*Tan[c + d*x])/(4*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(3/2)
)

________________________________________________________________________________________

Maple [A]  time = 0.186, size = 146, normalized size = 1.5 \begin{align*}{\frac{\cos \left ( dx+c \right ) \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{2}-1 \right ) }{4\,d{a}^{2} \left ( \sin \left ( dx+c \right ) \right ) ^{3}}\sqrt{ \left ( \cos \left ( dx+c \right ) \right ) ^{-1}}\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\cos \left ( dx+c \right ) +3\,\arctan \left ( 1/2\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) \sin \left ( dx+c \right ) -\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2),x)

[Out]

1/4/d/a^2*(1/cos(d*x+c))^(1/2)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*cos(d*x+c)*((-2/(cos(d*x+c)+1))^(1/2)*cos(d
*x+c)+3*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)-(-2/(cos(d*x+c)+1))^(1/2))*(-2/(cos(d*x+c)
+1))^(1/2)/sin(d*x+c)^3*(cos(d*x+c)^2-1)

________________________________________________________________________________________

Maxima [B]  time = 2.1884, size = 1392, normalized size = 14.35 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

1/4*(3*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x +
1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c)^2 + 12*(log(cos(1/2*d*x + 1/
2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2
*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)^2 + 3*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 +
 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) +
1))*sin(2*d*x + 2*c)^2 + 12*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1)
 - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c)^2 + 2*(6*(l
og(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2
+ sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c) + 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*
d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1
/2*d*x + 1/2*c) + 1) - 2*sin(3/2*d*x + 3/2*c) + 2*sin(1/2*d*x + 1/2*c))*cos(2*d*x + 2*c) + 4*(3*log(cos(1/2*d*
x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d
*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 2*sin(1/2*d*x + 1/2*c))*cos(d*x + c) + 4*(3*(log(cos(1/2*d*x + 1
/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/
2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c) + cos(3/2*d*x + 3/2*c) - cos(1/2*d*x + 1/2*c))*sin(2*d*x +
2*c) - 4*(2*cos(d*x + c) + 1)*sin(3/2*d*x + 3/2*c) + 8*cos(3/2*d*x + 3/2*c)*sin(d*x + c) - 8*cos(1/2*d*x + 1/2
*c)*sin(d*x + c) + 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 3*log
(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 4*sin(1/2*d*x + 1/2*c))/((sqr
t(2)*a*cos(2*d*x + 2*c)^2 + 4*sqrt(2)*a*cos(d*x + c)^2 + sqrt(2)*a*sin(2*d*x + 2*c)^2 + 4*sqrt(2)*a*sin(2*d*x
+ 2*c)*sin(d*x + c) + 4*sqrt(2)*a*sin(d*x + c)^2 + 4*sqrt(2)*a*cos(d*x + c) + 2*(2*sqrt(2)*a*cos(d*x + c) + sq
rt(2)*a)*cos(2*d*x + 2*c) + sqrt(2)*a)*sqrt(a)*d)

________________________________________________________________________________________

Fricas [A]  time = 2.06276, size = 909, normalized size = 9.37 \begin{align*} \left [\frac{3 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a} \log \left (-\frac{a \cos \left (d x + c\right )^{2} - 2 \, \sqrt{2} \sqrt{a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{8 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac{3 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{-a} \arctan \left (\frac{\sqrt{2} \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + 2 \, \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right )}{4 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/8*(3*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a)*sqrt(
(a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 +
 2*cos(d*x + c) + 1)) - 4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(
d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*(3*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(-a)*arc
tan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 2*sqrt((a*
cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c)
+ a^2*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sec{\left (c + d x \right )}}}{\left (a \left (\sec{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral(sqrt(sec(c + d*x))/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sec \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(sec(d*x + c))/(a*sec(d*x + c) + a)^(3/2), x)